jueves, 6 de octubre de 2011

Entrevista a un profesional sobre ¿Como pueden repercutir la higiene y la salud en los sistemas del cuwerpo humano?

DATOS:
 
Miguel Angel Montiel Luna
  Medico General, especialista en Medicina Interna.
Lugar laboral: IMSS
No. De Clave del IMSS: 103458 

RESPUESTA:

La higiene es sinónimo de bienestar y de salud, ya que nos manifiesta un equilibrio biopspsicosocial  en el ser humano. Puesto que la falta de higiene mental, física y espiritual, da entrada a una innumerable cantidad de enfermedades que afectan el equilibrio homeostásico de las personas, cabe aclarar que este término hace referencia a la tendendencia a la estabilidad del organismo. Por lo tanto no debemos olvidar que nosotros somos un conjunto formado por cuerpo, mente y espíritu y que estos tres están invariablemente unidos entre sí, ya que si alguno de ellos se altera, por consecuencia se altera la homeostadia de los sistemas del cuerpo humano.
Recordemos que la mayoría de los padecimientos físicos son derivados de problemas emocionales, que se somatizan en signos y síntomas. 
Como ejemplo, podemos mencionar el estrés que independiente del factor hereditario predispone a enfermedades como la diabetes, hipertensión arterial y alteraciones de tipo mental (depresión).
 
 

Concepto de higiene, sus tipos, salud y como repercute en la Educación Física

¿Qué es higiene:

Es el conjunto de conocimientos y técnicas que deben aplicar los individuos para el control de los factores que ejercen o pueden ejercer efectos nocivos sobre su salud. La higiene personal es el concepto básico del  aseo, limpieza  y cuidado de nuestro cuerpo.
La higiene es una parte de la medicina que se preocupa por aspectos tanto personales como ambientales que afectan a la salud.
La higiene se refiere al aseo y la limpieza de las personas, las viviendas y los hogares públicos, pero en un sentido más amplio también incluye un extenso conjunto de prácticas, muchas de ellas promovidas y reguladas por las autoridades con el objetivo de conservar la salud.
Para conseguir una vida sana es necesario realizar ejercicios corporales, hábitos alimenticios ymantener una higiene   tanto física como mental.
Este trabajo se enfocará y hablará sobre la importancia que tiene la higiene en nuestra vida, ya que sobre ella cae el peso de muchas consecuencias tanto positivas como negativas.
La higiene es el conjunto de conocimientos y técnicas que aplican los individuos para el control de los factores que ejercen o pueden ejercer efectos nocivos sobre su salud. La higiene personal es el concepto básico del aseo, de la limpieza y del cuidado del cuerpo humano.

Objetivos:
Sus objetivos son mejorar la salud, conservarla y prevenir las enfermedades o infecciones.
Se entiende como higiene:
  1. Limpieza, aseo de lugares o personas.
  2. Hábitos que favorecen la salud.
  3. Parte de la medicina orientada a favorecer hábitos saludables, en prevención de enfermedades.
  4. Reconocimiento, evaluación y control de aquellos factores y tensiones ambientales que surgen en el lugar de trabajo y que pueden provocar enfermedades, quebrantos de salud, quebrantos de bienestar, incomodidad e ineficacia de los trabajadores y los ciudadanos.
  5. La higiene personal es la parte de la medicina que trata de los medios en que el hombre debe vivir y de la forma de modificarlos en el sentido más favorable para su desarrollo.

Tipos De Higiene:

En la actualidad la higiene se puede clasificar de varias maneras, las principales son: pública y privada. De la aplicación de la higiene privada se encarga el individuo y entre sus principales objetivos destacan el aseo corporal y la limpiezadel entorno. La higiene pública, por otra parte, es aquella en cuya aplicación interviene la autoridad que adopta medidas colectivas para el saneamiento de comunidades, como la obtención de agua potable o la construcción de redes de alcantarillado, prescribe reglas profilácticas y organiza campañas sanitarias preventivas como los programas masivos de vacunación que representan una pieza clave en la lucha contra las enfermedades infecciosas. Además de estos dos grupos, se pueden clasificar los tipos de higiene atendiendo al fin que tienen cada uno de ellos como puede ser: higiene deportiva, higiene corporal e higiene mental.

¿Qué es salud?


Salud (del latín "salus, -ūtis") es el estado de completo bienestar físico, mental y social, y no solamente la ausencia de infecciones o enfermedades ligeras, fuertes o graves, según la definición de la Organización Mundial de la Salud realizada en su constitución de 1946. También puede definirse como el nivel de eficacia funcional o metabólica de un organismo tanto a nivel micro (celular) como en el macro (social). El concepto salud abarca el estado biopsicosocial, los aspectos que un individuo desempeña. En 1992 un investigador agregó a la definición de la OMS: "y en armonía con el medio ambiente", ampliando así el concepto.
La forma física es la capacidad que tiene el cuerpo para realizar cualquier tipo de ejercicio donde muestra que tiene resistencia, fuerza, agilidad, habilidad, subordinación, coordinación y flexibilidad.
Existe también la salud mental, la cual se caracteriza por el equilibrado estado psíquico de una persona y su autoaceptación (gracias al autoaprendizaje y autoconocimiento); en palabras clínicas, es la ausencia de cualquier tipo de enfermedad mental.
Relación con la educación física:
Uno de los principales propósitos generales de la educación física es lograr en aquellos que la practican el hábito, la adquisición de un estilo de vida activo y saludable. La Organización Mundial de la Salud (OMS), en la Carta de Ottawa (1986), considera los estilos de vida saludables como componentes importantes de intervención para promover la salud en el marco de la vida cotidiana, en los centros de enseñanza, de trabajo y de recreo. Pretende que toda persona tenga cuidados consigo mismo y hacia los demás, la capacidad de tomar decisiones, de controlar su vida propia y asegurar que la sociedad ofrezca a todos la posibilidad de gozar de un buen estado de salud. Para impulsar la salud, la educación física tiene como propósitos fundamentales: ofrecer una base sólida para la práctica de la actividad física durante toda la vida, desarrollar y fomentar la salud y bienestar de los estudiantes, para ofrecer un espacio para el ocio y la convivencia social y ayudar a prevenir y reducir los problemas de salud que puedan producirse en el futuro
El ejercicio físico es cualquier movimiento corporal repetido y destinado a conservar la salud o recobrarla. A menudo también es dirigido hacia el mejoramiento de la capacidad atlética y/o la habilidad. El ejercicio físico regular es un componente necesario en la prevención de algunas enfermedades como problemas cardíacos, enfermedades cardiovasculares, Diabetes mellitus tipo 2, sobrepeso, dolores de espalda, entre otros.
El ejercicio físico se debe practicar con mesura y de forma equilibrada, prestando atención a los cambios físicos internos para aprender a comprender la relación causa-efecto entre el movimiento físico concreto y su efecto directo con los cambios internos percibidos.
Recomendable porque puede llevar a un desgaste físico de ciertas partes del cuerpo. Por eso, cabe insistir en el equilibrio de fuerzas, tanto internas como externas, y a ello ayuda el autoconocimiento mediante un crítico autoanálisis (autoexámenes de conciencia mientras se desarrolla la actividad física).
El ejercicio físico es necesario para una salud equilibrada; además, debe complementarse con una dieta equilibrada y una adecuada calidad de vida(Ortega, G. 2007,pps). Sus beneficios pueden resumirse en los siguientes puntos:)
  • Aumenta la vitalidad, por lo que proporciona más energía y capacidad de trabajo.
  • Auxilia en el combate del estrés, ansiedad y depresión.
  • Incrementa autoestima y autoimagen.
  • Mejora tono muscular y resistencia a la fatiga.
  • Facilita la relajación y disminuye la tensión.
  • Quema calorías, ayudando a perder peso excesivo o a mantenerse en el peso ideal.
  • Ayuda a conciliar el sueño.
  • Fomenta la convivencia entre amigos y familiares, además de dar la oportunidad de conocer gente.
  • Reduce la violencia en personas muy temperamentales.
  • Favorece estilos de vida sin tabaco, alcohol y drogas.
  • Mejora la respuesta sexual.
  • Atenúa la sensación de aislamiento y soledad entre ancianos.
  • Fortalece los pulmones y con ello mejora la circulación de oxígeno en la sangre.
  • Disminuye el colesterol y riesgo de infarto, y regulariza la tensión arterial.
  • Es eficaz en el tratamiento de la depresión.
  • Estimula la liberación de endorfinas, las llamadas "hormonas de la felicidad".
  • Permite una distracción momentánea de las preocupaciones, con lo que se obtiene tranquilidad y mayor claridad para enfrentarlas más adelante.
La cantidad mínima para prevenir enfermedades es de 30 minutos diarios de actividad física moderada. Otros hábitos que deben combinarse con la realización de ejercicios son: la buena alimentación, el descanso adecuado, la higiene y evitar el consumo de sustancias perjudiciales para el organismo, como el tabaco, el alcohol y otros estimulantes.

Que relación existe entre ejercitación y consumo maximo de oxigeno?

¿Qué es el Oxígeno?
El oxígeno es un elemento químico de número atómico 8 y símbolo O. En su forma molecular más frecuente, O2, es un gas a temperatura ambiente. Representa aproximadamente el 20,9% en volumen de la composición de la atmósfera terrestre. Es uno de los elementos más importantes de la química orgánica y participa de forma muy importante en el ciclo energético de los seres vivos, esencial en la respiración celular de los organismos aeróbicos. Es un gas incoloro, inodoro (sin olor) e insípido. Existe una forma molecular formada por tres átomos de oxígeno, O3, denominada ozono cuya presencia en la atmósfera protege la Tierra de la incidencia de radiación ultravioleta procedente del Sol.

CONSUMO DE OXÍGENO (VO2):
Cuando se realiza ejercicio físico cambian rápidamente las necesidades energéticas y por tanto metabólicas y se produce la adaptación corporal en un tiempo más o menos rápido,dependiendo de la intensidad del esfuerzo y del estado funcional del sujeto. Es el sistema de trasporte de oxigeno (O2) el encargado de satisfacer esas demandas energéticas. El VO2 es expresión directa de las necesidades metabólicas del organismo en un momento dado y el mejor determinante del nivel metabólico alcanzado en un esfuerzo.
De acuerdo con las ecuaciones de Fick, el consumo de oxígeno depende de la capacidad del corazón y los tejidos para extraer el oxígeno,según la siguiente fórmula:
VO2=Gc x D(a-v)O2
El VO2máx. es un parámetro que nos indica la máxima capacidad de trabajo físico de un individuo y nos valora de forma global el estado del sistema de trasporte de O2 desde la atmósfera hasta su utilización en el músculo, integrando el funcionamiento del aparato respiratorio, cardiovascular y metabolismo energético. El consumo de O2 (VO2) va a depender de factores centrales (corazón y pulmones) y de factores periféricos como la diferencia arterio-venoso de O2 (dif (a-v) O2), la cual depende a su vez de factores que condiciona el contenido de O2 en la sangre arterial (ventilación, difusión, trasporte de O2 desde los pulmones hasta la células) y en la sangre venosa (extracción de O2 por los tejidos). Por lo tanto el VO2 es el producto del gasto cardiaco (producto de la frecuencia cardiaca por el volumen latido) por la dif(a-v)O2.La medida del Consumo Máximo de Oxigeno (VO2 max.) es pues un excelente criterio de aptitud a los ejercicios de larga duración (aerobios). Su determinación exige la realización de un ejercicio de intensidad elevada y la utilización de materiales especializados Ciclo ergómetro y Tapiz ó Cinta de Esfuerzo, Analizador computarizado de gases, Electrocardiógrafo, Esfingomanómetro para medición de presión arterial. Los resultados se expresan en litros de oxígeno consumidos por minuto ó relativizados al peso en mililitros por Kgs. Así para cada deporte, han sido establecidos los consumos de oxígenos realizados tanto por los campeones mundiales como por los niveles intermedios. Por otra parte, los deportistas y sus entrenadores efectúan una demanda cada vez superior de este tipo de dados, lo cual les permite conocer sus posibilidades, aptitudes y estado general.
EL DEPORTISTA podrá ver su evolución en el transcurso del tiempo.Hay que tener en cuenta que un consumo de oxígeno elevado, permite entrenamientos de más intensidad y una mejor recuperación post-ejercicio, pudiendo intervenir indirectamente en la calidad de las marcas, aún en las de corta duración.Durante las pruebas se realiza un Electrocardiograma de esfuerzo y asimismo se determina la presión arterial durante el esfuerzo. Se controlan informáticamente las constantes del rendimiento energético. Ello se realiza a través de un analizador de gases K4B2 y un ordenador analizando y valorando hasta cerca de 50 parámetros cardiorrespiratorios y metabólicos, eliminándose posibles situaciones patológicas durante la prueba, que son totalmente comparables al desarrollo del deporte practicado. El VO2máx. es un parámetro reproducible y su determinación se realiza de una forma fiable y precisa mediante una prueba de esfuerzo incremental con sistema de análisis del intercambio de gases respiratorios y de la ventilación pulmonar. Conforme la intensidad es mayor, el organismo responde con un mayor gasto energético, hasta una intensidad de ejercicio en que a pesar de aumentar la carga, el VO2 no aumenta más. Existen múltiples factores que influyen en la obtención del VO2máx. como la edad, el nivel de condición física, el protocolo utilizado y la motivación del paciente.El VO2máx. es variable entre individuos, y depende de múltiples factores como la herencia, la edad, el sexo, el peso y el grado de entrenamiento. La genética es un determinante importante de la condición aeróbica pudiendo condicionar hasta el 60% del VO2máx. 
Esta claro que dormir y correr son dos actividades bien distintas. Semejante afirmación (algo lejos de lo “genial”) sirve muy bien a los propósitos de ilustrar el concepto de consumo máximo de oxígeno. Es evidente que la primera tiene una demanda mucho menor que la segunda. Esto es así porque el correr es una actividad que pone en marcha a toda la musculatura. Y a medida que corremos más rápido, la demanda crece. Pero todo crecimiento tiene su límite. Llegado ese punto, organismo ya no puede reclutar más oxígeno: ha alcanzado su máximo consumo de oxígeno.
Este consumo de oxígeno esta determinado por tres factores íntimamente relacionados, y que son: el oxígeno que podemos captar en la inspiración, el oxígeno que podemos transportar en los glóbulos rojos, y oxígeno que finalmente podemos absorber a través de los alvéolos pulmonares.
A su vez, el consumo de oxígeno está determinado en gran parte por nuestra herencia genética, pero otros valores tales como el sexo, la edad, el peso, la condición física y el entrenamiento pueden modificarlo, aunque no sustancialmente. La gran mayoría de los autores concuerda en señalar que el consumo máximo de oxígeno (VO2 max) no puede mejorarse más del 15% – 20%.
El entrenamiento del consumo máximo cobra vital importancia en las disciplinas deportivas que van de los 3 a 10 minutos, si bien también es entrenable en deportes de mayor duración, ya sea como método de control o de mejoramiento de base de la capacidad de resistencia.
El VO2 max no es un tema menor en el entrenamiento deportivo. Espero que estas líneas sirvan como disparador de una serie de comentarios que sin duda orientarán a los intereses de los lectores que, a través de éste medio, buscan conocer más y mejor de esta fascinante materia.

La transformacion de los alimentos empezando desde su preparación

  • Preparación:

Muchos de los alimentos de uso común no serían comestibles, ni podrían aprovecharse de ellos las sustancias nutritivas, si no se sometieran a los diferentes procesos de preparación y cocción, de ahí la importancia de la preparación culinaria, que debe ser el mayor apoyo de la nutrición puesto que los alimentos mal presentados y preparados, tienen pocas posibilidades de ser aceptados y consumidos, aunque sean excelentes fuentes de nutrientes.

La preparación de alimentos

La Organización Mundial de la Salud recogiendo su preocupación en relación con la higiene alimentaria y su repercusión para la salud promovió las denominadas:
Reglas de oro para la preparación de alimentos sanos, que siguen en vigor:
  1. Escoger alimentos cuyo tratamiento asegure la inocuidad (procurando limpiar la fruta, o las latas antes de abrirlas, etc.)
  2. Cocer bien los alimentos
  3. Consumir los alimentos inmediatamente después de su cocción
  4. Conservar adecuadamente los alimentos cocidos
  5. Recalentar bien los alimentos cocidos
  6. Evitar cualquier contacto entre los alimentos crudos y cocidos
  7. Lavarse las manos frecuentemente<
  8. Vigilar la limpieza de la cocina, incluyendo en esta limpieza los utensilios o materiales que se utilizan para manejar alimentos
  9. Proteger los alimentos de insectos, roedores así como de otros animales domésticos
  10. Utilizar agua pura y mantener los productos de limpieza que sean tóxicos lejos de los alimentos
Estas reglas sintetizan las bases de la higiene alimentaria ya que los alimentos pueden sufrir contaminaciones por sustancias tóxicas y gérmenes patógenos a lo largo de la cadena alimentaria. Esto puede ocurrir por accidente, o por haberse añadido de forma intencionada, con el objeto de mejorar su aspecto o enmascarar un fraude.

Trasformación de alimentos: La digestión:

La digestión es el proceso de transformación de los alimentos, previamente ingeridos, en sustancias más sencillas para ser absorbidos. La digestión ocurre tanto en los organismos pluricelulares como en las células, como a nivel subcelular. En este proceso participan diferentes tipos de enzimas. El aparato digestivo (aparato y sistema, ya que un sistema es el conjunto de órganos con el mismo tejido, el aparato es todo lo contrario; pueden formar parte de un aparato incluso varios sistemas) es muy importante en la digestión ya que los organismos heterótrofos dependen de fuentes externas de materias primas y energía para crecimiento, mantenimiento y funcionamiento. El alimento se emplea para generar y reparar tejidos y obtención de energía. Los organismos autótrofos (las plantas, organismos fotosintéticos), por el contrario, captan la energía lumínica y la transforman en energía química, utilizable por los animales.
En cada paso de la conversión energética de un nivel a otro hay una pérdida de materia y energía utilizable asociada a la mantención de tejidos y también a la degradación del alimento en partículas más pequeñas, que después se reconstituirán en moléculas tisulares más complejas.
También es el proceso en que los alimentos al pasar por el sistema digestivo son transformados en nutrientes y minerales que necesita nuestro cuerpo.

Este proceso se lleva a cabo en el aparato digestivo, tracto gastrointestinal o canal alimentario. El aparato digestivo, como un todo es un tubo con un solo sentido, con órganos accesorios como el hígado, la vesícula biliar y el páncreas, que asisten en el proceso químico involucrado en la digestión. La digestión, usualmente está dividida en procesos mecánicos, para reducir el tamaño de los alimentos y en una acción química para reducir adicionalmente el tamaño de las partículas y prepararlas para la absorción. En la mayoría de los vertebrados, la digestión es un proceso de varias etapas en el sistema digestivo, siguiendo a la ingestión de la materia prima, casi siempre otros organismos. El proceso de ingestión, usualmente involucra algún tipo de procesamiento mecánico o químico. La digestión está dividida en cuatro procesos separados:


  • Ingestión: colocar la comida en la boca.
  • Digestión mecánica y química: la masticación para rasgar y aplastar los alimentos y la agitación del estómago. La adición de químicos (ácidos, bilis, enzimas y agua) para degradar moléculas complejas hasta estructuras simples.


  • Absorción: movimiento de los nutrientes desde el sistema digestivo hasta los capilares circulatorios y linfáticos a través de la ósmosis, el transporte activo y la difusión.
  • Excreción: remoción de materiales no ingeridos del tracto digestivo a través de la defecación.

Un proceso subyacente es el movimiento muscular a través del sistema, tragado y peristalsis.
La digestión en el ser humano es el proceso mediante el cual los alimentos y bebidas se descomponen en sus partes más pequeñas para que el cuerpo pueda usarlos como fuente de energía, y para formar y mantener los tejidos. Comienza en la boca, cuando masticamos y comemos, y termina en el intestino delgado. Cuando comemos, los alimentos no están en una forma que el cuerpo pueda aprovechar sus componentes para nutrirse. Los alimentos y bebidas que consumimos deben transformarse en moléculas más pequeñas antes de ser absorbidos hacia la sangre y transportados a las células de todo el cuerpo. El proceso químico varía un poco dependiendo de la clase de alimento.

Fases

§      Fase cefálica: esta fase ocurre antes que los alimentos entren al estómago e involucra la preparación del organismo para el consumo y la digestión. La vista y el pensamiento, estimulan la corteza cerebral. Los estímulos al gusto y al olor son enviados al hipotálamo y la médula espinal. Después de esto, son enviados a través del nervio vago.
§      Fase gástrica: esta fase toma de 3 a 4 horas. Es estimulada por la distensión del estómago y el pH ácido. La distensión activa los reflejos largos y mientéricos. Esto activa la liberación de acetilcolina la cual estimula la liberación de más jugos gástricos. Cuando las proteínas entran al estómago, unen iones hidrógeno, lo cual disminuye el pH del estómago hasta un nivel ácido (el valor del PH va de 0 a 14 siendo 0 el nivel más ácido y 14 el más básico). Esto dispara las células G para que liberen gastrina, la cual por su parte estimula las células parietales para que secreten HCl. La producción de HCl también es desencadenada por la acetilcolina y la histamina.
§      Fase intestinal: esta fase tiene dos partes, la excitatoria y la inhibitoria. Los alimentos parcialmente digeridos, llenan el duodeno. Esto desencadena la liberación de gastrina intestinal. El reflejo enterogástrico inhibe el núcleo vago, activando las fibras simpáticas causando que el esfínter pilórico se apriete para prevenir la entrada de más comida e inhibiendo los reflejos.
Procesos:
La digestión comienza en la boca donde los alimentos se mastican y se mezclan con la saliva que contiene enzimas que inician el proceso químico de la digestión, formándose el bolo alimenticio.
§      La comida es comprimida y dirigida desde la boca hacia el esófago mediante la deglución, y del esófago al estómago, donde los alimentos son mezclados con ácido clorhídrico que los descompone, sobre todo, a las proteínas desnaturalizándolas. El bolo alimenticio se transforma en quimo.
§      Debido a los cambios de acidez (pH) en los distintos tramos del tubo digestivo, se activan o inactivan diferentes enzimas que descomponen los alimentos.
§      En el intestino delgado el quimo, gracias a la bilis secretada por el hígado, favorece la emulsión de las grasas y gracias a las lipasas de la secreción pancreática se produce su degradación a ácidos grasos y glicerina. Además el jugo pancreático contiene proteasas y amilasas que actúan sobre proteínas y glúcidos. La mayoría de los nutrientes se absorben en el intestino delgado. Toda esta mezcla constituye ahora el quilo.
§      El final de la digestión es la acumulación del quilo en el intestino grueso donde se absorbe el agua para la posterior defecación de las heces.

Aparato Digestivo

Masticación

La masticación es una parte de la función digestiva presente en una gran variedad de animales, incluido el hombre. Es el proceso mediante el cual se tritura la comida previamente ingerida al comienzo de la digestión.
En los seres humanos, la masticación corre a cargo de los dientes, principalmente de los molares, en colaboración con la lengua. Estas piezas dentales tienen unas "cúspides" en la superficie de contacto con el alimento y, por efecto del movimiento de la mandíbula se desplazan lateralmente para favorecer la masticación. El producto de la masticación es el bolo alimenticio.
En este proceso se produce la amilasa que sirve para facilitar la digestión del almidón.


La producción de los jugos digestivos

Las glándulas del sistema digestivo son de primordial importancia en el proceso de la digestión, porque producen tanto los jugos que descomponen los alimentos como las hormonas que controlan el proceso.
Las primeras glándulas en actuar son las glándulas salivales de la boca. La saliva que producen contiene dos enzimas: la amilasa salivar o ptialina, que comienza a digerir el almidón de los alimentos y lo transforma en moléculas más pequeñas, y la lisozima, que actúa eliminando gran cantidad de bacterias, sobre todo bacterias tipo GRAM+, por lisis.
El siguiente grupo de glándulas digestivas se encuentra en la membrana que tapiza el estómago. Producen el jugo gástrico, que contiene agua, ácido clorhídrico (que cambia el pH del medio y activa las enzimas) y tres enzimas: la pepsina, que en presencia de ácido fragmenta las proteínas; la renina o cuajo, que coagula la caseína de la leche; y la lipasa gástrica, que disgrega las grasas en ácidos grasos y glicerol.
Después de que el estómago vierte los alimentos y su jugo en el intestino delgado, los jugos de otros dos órganos se mezclan con ellos para continuar el proceso. Uno de esos órganos es el páncreas, que segrega jugo pancreático, rico en enzimas que descomponen los hidratos de carbono, las grasas y las proteínas de los alimentos. Otras enzimas que participan en el proceso provienen de glándulas de la pared intestinal o forman parte de ella.
El hígado produce la bilis, otro jugo digestivo, que se almacena en la vesícula biliar. Cuando comemos, la bilis se vierte por las vías biliares al intestino y se mezcla con las grasas de los alimentos. Los ácidos biliares disuelven las grasas en el contenido acuoso del intestino grueso


Absorción y transporte de los nutrientes

La mucosa intestinal va absorbiendo los productos de la digestión. La absorción intestinal a nivel del intestino delgado se hace a través de vellosidades intestinales delgadas, las cuales absorben el quimo (bolo alimenticio tras pasar por los procesos del estómago). En el intestino delgado se absorben proteínas, lípidos y otros principios esenciales. En el intestino grueso, se terminan de absorber todos los nutrientes que no fueron absorbidos en el intestino delgado, como agua y electrolitos.
Los materiales absorbidos atraviesan la mucosa y pasan a la sangre, que los distribuye a otras partes del cuerpo para almacenarlos o para que pasen por otras modificaciones químicas. Esta parte del proceso varía dependiendo de los diferentes tipos de nutrientes.
  • Glúcidos o hidratos de carbono. Un adulto promedio consume cerca de un cuarto de kilogramo de hidratos de carbono al día. Muy a menudo, los alimentos portadores de glúcidos contienen al mismo tiempo almidón, que es digerible, y fibra, que no lo es.
Los hidratos de carbono digeribles se descomponen en moléculas más sencillas por la acción de las enzimas de la saliva, del jugo pancreático y de la mucosa intestinal. El almidón se digiere en dos etapas: primero, una enzima de la saliva y del jugo pancreático lo descompone en moléculas de maltosa; luego, la maltasa, una enzima de la mucosa del intestino delgado, divide la maltosa en moléculas de glucosa que pueden absorberse en la sangre. La glucosa es transportada por el torrente sanguíneo hasta el hígado, en donde se almacena.
  • El azúcar común, constituido en su mayor parte por sacarosa, es digerido por una enzima de la mucosa del intestino delgado llamada sacarasa, que lo convierte en glucosa y fructosa, cada una de las cuales puede absorberse en el intestino y pasar a la sangre.
La leche contiene lactosa, otro tipo de azúcar que se transforma en moléculas fáciles de absorber (glucosa y galactosa) mediante la acción de una enzima llamada lactasa, que se encuentra en la mucosa intestinal.
  • Proteínas. Las proteínas son moléculas grandes que deben ser descompuestas por enzimas antes de que se puedan utilizar para fabricar y reparar los tejidos del cuerpo. Una enzima del jugo gástrico comienza la digestión de las proteínas que comemos. El proceso termina en el intestino delgado. Allí, varias enzimas del jugo pancreático y de la mucosa intestinal descomponen las enormes moléculas en unas mucho más pequeñas, llamadas aminoácidos. Estos pueden absorberse en el intestino delgado y pasar a la sangre, que los lleva a todas partes del cuerpo para fabricar las paredes celulares y otros componentes de las células.
  • Grasas. Las moléculas de grasas son una importante fuente de energía para el cuerpo. El primer paso en la digestión de una grasa es disolverla en el contenido acuoso del intestino. Los ácidos biliares producidos por el hígado actúan como detergentes naturales que disuelven las grasas en agua y permiten que las enzimas descompongan sus grandes moléculas en moléculas más pequeñas, algunas de las cuales son los ácidos grasos y el colesterol. Los ácidos biliares se unen a los ácidos grasos y al colesterol y les ayudan a pasar al interior de las células de la mucosa. En ellas, las moléculas pequeñas vuelven a formar moléculas grandes, la mayoría de las cuales pasan a los vasos linfáticos cercanos al intestino. Estos vasos llevan las grasas modificadas a las venas del tórax y la sangre las transporta hacia los lugares de depósito en distintas partes del cuerpo.
  • Vitaminas. Otros integrantes fundamentales de nuestra comida que se absorben en el intestino delgado, son las vitaminas. Estas sustancias químicas se agrupan en dos clases, según el líquido en el que se disuelven: hidrosolubles (todas las vitaminas del complejo B y la vitamina C) y liposolubles (las vitaminas A, D y K).
  • Agua y sal. La mayoría del material que se absorbe del intestino grueso es agua, en la que hay sal disuelta. El agua y la sal vienen de los alimentos y líquidos que consumimos y de los jugos que las glándulas digestivas secretan. En el intestino de un adulto sano se absorbe más de 4 l de agua con más de 30 g de sal cada 24 horas.

Motilidad del intestino delgado

El intestino delgado, es donde el proceso de la digestión tiene lugar durante más tiempo, en concordancia con su mayor longitud. Tiene dos funciones mayores : mezcla y propulsión. Las contracciones anulares múltiples ( 1-2 cm ) denominadas de segmentación, aparecen frecuentemente en el intestino delgado y producen movimiento del quimo

La frecuencia de las contracciones segmentarias dependen de la frecuencia del REB. Éstas son menos frecuentes en la porción distal del intestino delgado. El duodeno tiene un REB de 11 ciclos por minuto, mientras las contracciones en íleo son 8 ciclos por minuto. Este decrecimiento en el REB facilita el movimiento del quimo distalmente
Como en otros lugares del intestino, las contracciones musculares del intestino delgado son estimuladas por factores intrínsecos y extrinsecos. Por ejemplo la CCK, la ACETIL COLINA son estimulatorias. Los agonistas alfa adrenérgicos, el óxido nítrico y el glucagon son substancias inhibitorias.
Las contracciones propulsivas del intestino delgado son menos frecuentes que las de segmentación.
Después de la ingestión del alimento y la entrada de quimo gástrico al intestino se presenta un aumento de las contracciones peristálticas. El estímulo para estas contracciones es la distensión del intestino delgado.
Durante el periodo de ayuno o periodos interdigestivos, se presenta un patrón propulsivo muy bien definido. Este patrón se caracteriza por una actividad motora cíclica del estomago al íleon. Cada ciclo esta compuesto de 3 fases que son:
  • FASE I. Fase de reposo.
  • FASE II. Fase irregular de potenciales en espiga y contracciones.
  • FASE III. Fase regular de potencias en espiga y contracciones.
Estas fases conforman el complejo motor migratorio (CMM), se presenta cada 90 minutos y avanza 5cm/minuto. Algunas hormonas han sido implicadas en el control del CMM como es la motilina, somatostatina y los opioides. El papel del CMM parece ser el de la " limpieza del intestino". El sistema nervioso entérico coordina esta actividad.
Finalmente, todos los nutrientes digeridos se absorben a través de las paredes intestinales. Los productos de desecho de este proceso comprenden partes no digeridas de los alimentos, conocidas como fibra, y células viejas que se han desprendido de la mucosa. Estos materiales son impulsados hacia el colon, en el cual permanecen generalmente durante uno o dos días, hasta cuando se expulsa la materia fecal durante la deposición.


Motilidad colónica

El colon de un adulto recibe entre 0,5 y 2,5 L de quimo por día. Este consiste en residuos no digeridos de la comida, además de agua y electrolitos. El colon debe reducir este volumen a unos 100-200 g de materia fecal. Las contracciones del colon hacen que éste se abra y cierre como un acordeón. Las contracciones segmentarias de las capas circulares dividen el colon en segmentos que se denominan haustras y representa la actividad motora más importante. La frecuencia de las segmentaciones depende del REB, siendo éstas más frecuentes en la parte distal.
Tres a cuatro veces al día se presentan movimientos en masa, tienden a presentarse después de las comidas y su misión es la de impulsar el contenido colónico hacia el sigmoides.


Función rectal y defecación

La motilidad del recto y de los esfínteres anales son diferentes a las del resto del colon. El recto tiene dos funciones primarias, sirven como almacenamiento de las heces y la de expulsión de estas. Así, el recto debe tener la capacidad de acomodar cierta cantidad de heces. Cuando esta capacidad de almacenamiento se excede, se produce un estimulo a los receptores de distensión que origina una contracción de la musculatura del recto y relajación de los esfínteres. Entonces el individuo inicia el proceso de defecación, con los siguientes cambios fisiológicos, cierre de la glotis, fijación del diafragma, contracción de la pared abdominal y relajación de los esfínteres.


Otros patrones de motilidad específicos

El primero es el vómito, que está frecuentemente asociado con nauseas y puede ser producido por diferentes estímulos. Cuando el centro del vómito del cerebro es estimulado se presenta una respuesta que consiste en cierre de la glotis después de la inspiración, contracción de los músculos abdominales que aumentan la presión intraabdominal y ondas peristálticas inversas que se inician en la porción superior del intestino delgado.
El segundo es un estado adinámico que se denomina íleon que se puede iniciar por múltiples causas entre ellas un proceso inflamatorio intestinal, traumático o medicamentoso. En este período no hay CMM y en general no hay actividad motora. Esto último recibe la influencia de varios factores, como la naturaleza de los alimentos (especialmente su contenido de grasas y proteínas) y el grado de actividad muscular del estómago y del intestino delgado. A medida que los alimentos se digieren en el intestino delgado y se disuelven en los jugos del páncreas, el hígado y el intestino, el contenido intestinal se va mezclando y avanzando para facilitar la digestión adicional.

En el ser humano a que se refiere el Gasto Energetico? Como se presenta este gasto en una persona sedentaria.

Gasto Energético 

La energía se define como la capacidad para trabajar en distintas funciones. En el estudio de la nutrición, se refiere a la manera en la que el cuerpo utiliza la energía localizada en las uniones químicas dentro de los alimentos. En el organismo, la energía se libera mediante el metabolismo de los alimentos, los cuales deben suministrarse regularmente para satisfacer las necesidades energéticas para la supervivencia del cuerpo. Si bien, a la larga, toda la energía aparece en forma de calor, el cual se disipa hacia la atmósfera, los procesos únicos que ocurren dentro de las células hacen posible primero su uso para todas las tareas que se requieren para mantener la vida. Entre estos procesos se encuentran reacciones químicas que llevan a cabo la síntesis y mantenimiento de los tejidos corporales, conducción eléctrica de la actividad nerviosa, el trabajo mecánico del esfuerzo muscular y la producción de calor para mantener la temperatura corporal.
Gasto Energético Total
El gasto energético es la relación entre el consumo de energía y la energía necesaria por el organismo. Para el organismo mantener su equilibrio, la energía consumida debe de ser igual a la utilizada, o sea que las necesidades energéticas diarias han de ser igual al gasto energético total diario.
El cuerpo humano gasta la energía a través de varias maneras: en la forma de gasto energético de reposo (GER), actividad voluntaria (física) y el efecto térmico de los alimentos (ETA). Excepto en sujetos extremadamente activos, el GER constituye la mayor porción del gasto energético total (GET). La contribución de la actividad física varía mucho entre los individuos.(1)
El conjunto del gasto energético podemos dividirlo en:
Gasto Metabólico basal o metabolismo basal
Depende de la masa celular activa, es decir, del número y tamaño de células activas que tiene un organismo. La masa celular activa varía de una persona a otra según:
§  Tamaño y composición corporal
§  Edad
§  Situación de crecimiento, embarazo o lactancia
La energía que se emplea en el metabolismo basal está destinada a:
§  Metabolismo celular (50%)
§  Síntesis de moléculas, sobre todo de proteínas (40%)
§  Trabajo mecánico interno (movimiento de los músculos respiratorios, contracción del corazón, etc) (10%)
Es el estado en el que se consume energía para las actividades mecánicas que brindan sostén a los procesos vitales, como respiración y circulación, se sintetizan constituyentes orgánicos, se bombean iones a través de las membranas y se conserva la temperatura corporal. La mitad de la energía consumida se emplea para satisfacer las necesidades metabólicas del sistema nervioso. Los términos Tasa Metabólica Basal y Gasto energético en reposo, a menudo tienden a confundirse, la diferencia está en la medición de ambos.
La Tasa metabólica basal se mide en la mañana, con el cuerpo en descanso físico y mental completo, relajado, después de que el sujeto se despierta y está en estado de postabsorcion (10 – 12 horas después de última comida) y esta representa entre el 60 – 75% del Gasto energético total; mientras que el Gasto energético en reposo, se mide en cualquier momento del día y 3 a 4 horas después de la última comida. El metabolismo basal diario se puede calcular de manera aproximada de la siguiente forma, según Harris-Benedict:
Hombre: 66,473 + (13,751 x masa (kg)) + (5,0033 x estatura (cm)) - (6,55 x edad (años)); Mujer: 66,551 + (9,463 x masa (kg)) + (4,8496 x estatura (cm)) - (4,6756 x edad (años))


Factores que afectan la tasa metabólica basal
Tamaño y composición corporal, que se relacionan con la pérdida de calor y de energía que se requieren para mantener la masa muscular magra en reposo.
Los periodos de crecimiento rápido, como en los primeros dos años de vida, así como durante el embarazo.
Las secreciones de las glándulas endocrinas, en particular hormonas tiroideas (tiroxina) y norepinefrina, reguladores principales de la tasa metabólica. Cuando el suministro es inadecuado, el metabolismo basal puede caer hasta un 30 – 50%. Una glándula tiroides muy activa puede aumentar la TMB a casi el doble de la cantidad normal. Durante el sueño, la TMB disminuye aproximadamente en un 10% respecto a los niveles medidos en sujetos despiertos. Los episodios de fiebre o enfermedad, aumentan la TMB aproximadamente en 7% por cada grado de elevación de la temperatura corporal superior a 37 °C. Temperaturas ambientales extremas. Personas que viven en climas tropicales por lo general tienen una TMB de 5 – 20% más elevados que aquellas en áreas templadas.
También la tasa metabólica basal se puede calcular multiplicando la normalidad de su cuerpo con la fracción molar y es muy recomendable

Efecto térmico de los alimentos
También llamado proceso de Termogénesis, es la energía que se requiere para digerir, absorber y metabolizar los nutrientes. Aunque anteriormente se pensaba que esta energía era la necesaria para metabolizar proteínas, ahora parece ser el resultado de la síntesis de grasas y glucógeno a partir de carbohidratos. El consumo de carbohidratos o grasas aumenta la tasa metabólica cerca del 5% de calorías totales consumidas. Si la ingesta consta de proteínas de forma exclusiva la tasa metabólica aumenta cerca del 25%. Sin embargo, estos efectos disminuyen cuando los alimentos se mezclan en cada comida. Por lo general, el gasto por termogénesis se calcula en un 10% del gasto energético total. Cuando la comida es seguida de ejercicio, el ETA casi se duplica (2), proceso llamado Termogénesis adaptativa, la cual también es estimulada por el frío, la cafeína y la nicotina. Se ha demostrado que la cantidad de cafeína en una taza de café dada cada 2 horas durante 12 horas aumenta la ETA en un 8-11% (3). La nicotina tiene un efecto similar. Todo el trabajo empleado en la digestión, transporte y almacenamiento de nutrientes ocasiona un gasto energético que puede cifrarse, como promedio, en un 8 – 10 % del contenido energético del alimento ingerido.

Termogénesis inducida por la temperatura ambiente

Para mantener constante la temperatura corporal a 36.5 °C.


Componentes del gasto energético y sus determinantes en el niño y el adolescente

El gasto energético diario total en el niño y el adolescente se compone del gasto energético en reposo (GER), termogénesis inducida por la dieta (TID), actividad física y crecimiento. Este último, aunque muy importante en las edades pediátricas, es demasiado pequeño para ser medido excepto en recién nacidos en los que el crecimiento es muy rápido.

El GER es la energía necesaria para mantener las funciones vitales y la temperatura corporal en ambiente neutro. Supone un 65- 70% del gasto total, excepto en niños con enfermedades crónicas en las que el metabolismo basal está incrementado, o cuando realizan deportes de competición de alto consumo aeróbico, situación en la que es proporcionalmente menor. El GER en niños aumenta desde el nacimiento hasta la pubertad porque existe un incremento en el tamaño corporal. Por el contrario, cuando el gasto energético en reposo es expresado por kilogramo de peso corporal o de masa no grasa, aumenta durante el primer año de vida, pero disminuye posteriormente hasta los 20-25 años. En niños y adolescentes, la masa no grasa explica hasta un 80% de la variación del GER, la edad y el sexo añaden, respectivamente, un 3-4% y un 1% a la cifra anterior. El gasto energético en reposo es mayor en el sexo masculino respecto al femenino incluso en la época prepuberal.

La TID constituye del 5% al 10% del gasto energético total. Es la energía necesaria para que tengan lugar los procesos fisiológicos de digestión, absorción, distribución y almacenamiento de los nutrientes ingeridos. La TID aumenta linealmente con la cantidad calórica ingerida y varía según la composición cualitativa de los alimentos, siendo mayor con alimentos ricos en proteínas frente a carbohidratos o grasas. Otros factores que influyen son la palatabilidad de los alimentos, el tiempo de ingestión, la predisposición genética, la edad, capacidad fisiológica en los procesos de digestión y distribución-almacén de nutrientes, sensibilidad a la insulina, etc.. 

El gasto energético producido por la actividad física (GEAF) es el que se emplea para realizar una serie de actividades o comportamientos que implican movimiento corporal, o sea, actividad del músculo esquelético. Supone un 25-30% del gasto energético total aunque estas cifras varían mucho inter- e intra-individualmente. En el GEAF influyen el sexo, la edad y desarrollo puberal. Los niños y adolescentes varones presentan unos valores de actividad física significativamente mayores que los del sexo femenino. En niñas, la actividad física disminuye a partir de los 6,5-7 años de edad mientras que en los niños aumenta hasta la época prepuberal. En general, los niños y niñas prepúberes son más activos que los púberes y post-púberes. Otro determinante de la actividad física es el grado socioeconómico y el ambiente familiar. Estudios realizados en nuestro entorno han mostrado que los niños de categoría socioeconómica baja hacen menos ejercicio físico que los de alta y permanecen más horas frente al televisor. 

Métodos para la medición del gasto energético

La energía que un individuo gasta se puede medir directa o indirectamente con los diversos métodos disponibles actualmente. Los métodos de laboratorio suelen ser más precisos y exactos pero no pueden utilizarse en niños y adolescentes en condiciones libres. Por otro lado, los métodos de campo son baratos, menos precisos y sirven para grandes estudios poblacionales. Cada método posee unas características que lo harán apropiado según el tipo de estudio que se quiera realizar.

Calorimetría indirecta:
La combustión de nutrientes en el cuerpo humano fue descrita por primera vez por Lavoissier, que trabajó a finales del siglo XVIII en Francia. Lavoissier descubrió que una vela sólo producía combustión en presencia de oxígeno y describió como los organismos vivos, en igual medida, necesitan oxígeno para la combustión de alimentos, liberando calor como producto de esta reacción exotérmica. La producción de energía generada por los procesos bioquímicos del cuerpo humano puede ser determinada gracias a la medición del consumo de oxígeno (VO2) y la producción de dióxido de carbono (VCO2), en conjunción con la cuantificación del nitrógeno uréico excretado. La calorimetría indirecta utiliza para la cuantificación del gasto energético ecuaciones derivadas de diferentes fórmulas químicas con VO2 y VCO2 específicos para cada substrato. Para tal fin se utiliza una canopia o mascarilla de donde se toman las muestras de aire espirado mientras el sujeto permanece tumbado. La técnica no es invasiva y puede emplearse, con buenos resultados de precisión y exactitud, en estudios de investigación y en la práctica asistencial. 

Monitorización del ritmo cardiaco minuto a minuto
Este método, bien aceptado tanto en niños como adultos, se basa en el incremento lineal proporcional del ritmo cardiaco cuando aumenta el VO2 durante el ejercicio físico. Esta relación entre el VO2 y el ritmo cardiaco varía según el individuo, por lo tanto, se necesitan curvas de calibración personal que imiten una actividad en condiciones libres. Los registros de VO2 mediante calorimetría indirecta y de frecuencia cardiaca se determinan simultáneamente en diferentes niveles de ejercicio físico. Las ventajas de este método son su utilidad en registros objetivos y continuos del gasto energético, el no ser invasivo ni caro y poderse desarrollar en condiciones libres. Debido a sus características se puede aplicar en una muestra amplia de niños y adolescentes, de manera ambulatoria, con una precisión y exactitud aceptables. 

Agua doblemente marcada (2H218O)
La técnica del 2H218O está basada en la posibilidad de marcar el agua corporal para medir la diferencia en la tasa de desaparición de dos isótopos no radioactivos: 2H y 18O, determinada mediante muestras de saliva, orina o sangre, y con ello el VCO2 y VO2. La técnica es fácilmente soportable por los niños y adolescentes porque sólo tienen que tomar una sola dosis de 2H218O para marcar el agua corporal total. En condiciones libres, este método da un valor medio muy exacto del gasto energético total durante un periodo de 1-2 semanas. La técnica es simple, no invasiva y bien aceptada incluso para recién nacidos. 

Acelerometría
Varios aparatos portátiles han sido comercializados con el objeto de medir el gasto energético a partir del movimiento y aceleración corporales. Los acelerómetros más modernos son triaxiales, es decir, miden las aceleraciones del cuerpo minuto a minuto en tres ejes: delante-detrás, arriba-abajo y derecha-izquierda. Las ventajas generales de estos aparatos son su bajo costo y su capacidad para dar información sobre diferentes grados y patrones de actividad física. Sus limitaciones en niños son: a) que los propios niños se quiten estos aparatos portátiles o los sumerjan en agua, ya que hay que llevarlos constantemente, b) que las fórmulas utilizadas para el cálculo cuantitativo del gasto energético se idearon para adultos y, por este motivo, conllevan errores importantes. 

Cuestionarios de actividad física:
Los cuestionarios pueden ser útiles en estudios epidemiológicos a gran escala. La mayor dificultad que presentan es que su exactitud depende de la habilidad o interés del niño o de sus padres para rellenar el cuestionario con la información de lo sucedido. Además, por mucho que se quiera ajustar el cuestionario a la realidad, es muy difícil traducir las actividades apuntadas en el cuestionario a kilocalorías gastadas en las diferentes actividades diarias de un individuo, principalmente porque los equivalentes energéticos que se utilizan son fijos y sólo dependen del tiempo de duración de la actividad y del peso del niño, nada más apartado de la realidad fisiológica.